
1 Background of OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

April 2013

 ALTREONIC

"FROM

DEEP

SPACE TO

DEEP SEA"

QOS AND REAL TIME

REQUIREMENTS
FOR EMBEDDED
MANY- AND MULTICORE SYSTEMS

First publication in the

Gödel Series:

Systems

Engineering for

Smarties

2 Background of OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

Published by:

Altreonic NV

Gemeentestraat 61A B1

B3210 Linden

Belgium

www.altreonic.com

info.request (@) altreonic.com

April- 2013

Copyright Altreonic NV

Author: Eric Verhulst

Contact: goedelseries@altreonic.com

2nd publication in the Gödel Series:

Systems Engineering for Smarties©

This publication is published under a

Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

http://creativecommons.org/licenses/by-nc-sa/3.0/

3 Background of OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

QoS and Real Time Requirements for
Embedded Many- and Multicore Systems

Table of Contents

1 Introduction ... 5
1.1 Background of OpenComRTOS ... 6
1.2 Early requirements derived from the Virtuoso RTOS .. 7

2 Real-time embedded programming ... 9
2.1 Why real-time? .. 9
2.2 Why a simple loop is often not enough .. 9
2.3 Superloops and static scheduling ..11
2.4 Rate Monotonic Analysis ...13
2.5 The application of RMA in OpenComRTOS ...15
2.6 The issue of priority inversion and its inadequate solution16
2.7 Distributed priority inheritance in OpenComRTOS ...20
2.8 Next generation requirements ..21

3 Hard real-time on advanced multi-core chips .. 24
3.1 Effects of caching on predictable timings ...24
3.2 Inter Core Communication Performance ...27

3.2.1 Intel SCC ..28
3.2.2 Texas Instruments C6678 8-core DSP. ..28
3.2.3 Measurements on the Intel-SCC ...28
3.2.4 Impact of core distance on timings ..30
3.2.5 Measurements on the Texas Instruments C6678 8 core DSP ..31
3.2.6 Conclusions from these measurements ...32

4 An approach for QoS resource scheduling ... 34
4.1 F o r m a l i s i n g Quality of Service (QoS) domains ..34
4.2 Isolation for error propagation prevention ...35
4.3 The trade-offs involved when selecting the resource quantum37
4.4 Maintaining maximum QoS by graceful degradation and recovery38

5 Conclusion ... 40

6 References ... 41
6.1 Further reading ...41
6.2 Acknowledgements ..41

4 Background of OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

Preface

This booklet is the second of the Gödel* Series, with the subtitle "Systems Engineering for

Smarties". The aim of this series is to explain in an accessible way some important aspects of

trustworthy systems engineering with each booklet covering a specific domain.

The first publication is entitled "Trustworthy Systems Engineering with GoedelWorks" and

explains the high level framework Altreonic applies to the domain of systems engineering. It

discusses a generic model that applies to any process and project development. It explains the

16 necessary but sufficient concepts. This model was applied to the import of the project flow

of the ASIL (Automotive Safety Integrity Level) project of Flanders's Drive whereby a common

process was developed based on the IEC-61508, IEC-62061, ISO-DIS-26262, ISO-13849, ISO-DIS-

25119 and ISO-15998 safety standards covering the automotive on-highway, off-highway and

machinery domain.

The second publication is entitled “QoS and Real Time Requirements for Embedded Many- and

Multicore Systems”. It explains the principles behind real-time scheduling for embedded real-

time systems whereby meeting the real-time constraints often is a top level safety requirement.

What distinguishes this booklet is that it also deals with systems that have multiple processors

(on-chip or connected over a network). The complexity and challenges on such targets mean

that the system must now schedule all available resources, such as communication backbones,

peripherals and energy. In combination with new functional needs this results in new

approaches focusing on the Quality of Service and requiring specific support from the

hardware.

The name of Gödel (as in GoedelWorks) was chosen because Kurt Gödel's theorems have

fundamentally altered the way mathematics and logic was approached, now almost 80 years

ago. The attentive reader will also recognise Heisenberg, Einstein and Wittgenstein on the front

page. What all these great thinkers really did was to create clarity in something that looked very

complex. And while it required a lot of hard thinking on their side, it resulted in a very concise

and elegant theorem or formula. One can even say that any domain or subject that still looks

complex is really a problem domain that is not yet fully understood. We hope to achieve

something similar, be it less revolutionary, for the systems engineering domain and it's always

good to have intellectual beacons to provide guidance.

The Gödel Series publications are freely downloadable from our web site. Further titles in the

planning will cover topics of Real-Time programming, Formal Methods and Safety Analysis

methods. Copying of content is freely permitted provided the source is referenced. As these

booklets will be updated based on feedback from our readers, feel free to contact us at

goedelseries @ altreonic.com.

Eric Verhulst,

CEO/CTO Altreonic NV

 *: pronunciation [ˈkʊʁt ˈɡøːdəl] (listen)

http://en.wikipedia.org/wiki/Wikipedia:IPA_for_German
http://upload.wikimedia.org/wikipedia/commons/f/fd/Kurt_gÃ¶del.ogg
http://en.wikipedia.org/wiki/File:Kurt_g%C3%B6del.ogg

5 Background of OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

1 Introduction

In this booklet we discuss the requirements and specifications for a Real-Time Operating System

(RTOS) from the point of view of its capabilities to support embedded applications in meeting

safety, particularly real-time requirements on modern many/multicore systems.

As the booklet is related to a multiprocessor and distributed real-time operating system this is

rather unique as most RTOS are designed for single processor systems and if not, they assume a

shared memory architecture. In such cases, the RTOS is only concerned with the local

scheduling on each processor with interprocessor

synchronisation and communication being left to a

middleware layer. In view of modern many/multicore

architectures this is no longer adequate as resources

are globally shared on the highly integrated chip and

any activity on any processor has a potential impact on

the scheduling on another processor. We outline how

simple real-time requirements are addressed by using

static scheduling schemes. While predictable they are

prone to catastrophic failure, which in the case of the

highly concentrated functionality and performance

in many/multicore chips can be catastrophic for the

whole system. Moreover, their behaviour is increasingly

statistical in nature, hence soft real-time rather than

hard real-time. We show how a more dynamic

approach can make better use of the available

resources and can allow fault containment as well as

recovery from errors. This extends the traditional real-

time requirements into a wider concept that we call

Quality of Service (QoS).

In order to meet QoS levels, system components (on-

chip or distributed) must meet certain criteria. We

call this the Assured Reliability and Resilience Level

(ARRL) and link it with the QoS. We use the formally

developed network-centric OpenComRTOS as a

reference.

real-time

adj

(Electronics & Computer
Science / Computer
Science) denoting or
relating to a data-
processing system in
which a computer receives
constantly changing data,
such as information
relating to air-traffic
control, travel booking
systems, etc., and
processes it sufficiently
rapidly to be able to
control the source of the
data

Collins English
Dictionary – Complete
and Unabridged ©
HarperCollins Publishers
1991, 1994, 1998, 2000,
2003

http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English
http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English
http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English

6 Background of OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

1.1 Background of OpenComRTOS
The initial purpose for developing OpenComRTOS [1] was to provide a soft- ware runtime

environment supporting a coherent and unified systems engineering methodology based on

“Interacting Entities”, currently further developed and commercialised by Altreonic [2]. In this

methodology requirements result in concrete specifications that are fulfilled in the architectural

domain by concrete “entities” or sets of entities. Entities can be decomposed as well as

grouped to fulfill the specifications. In order to do so, we also need to define “interactions”,

basically the actions that coordinate the entities. In practice these interactions can be seen as

protocols whereby the entities synchronise and exchange data.

Interactions and entities are first of all abstractions used during the modelling phase. As such, a

specified functionality can first be simulated as part of a simulation model, critical properties

can be formally verified using formal techniques and finally an implementation architecture can

be defined using the architectural modelling tools of the target domain. In our case we try to

keep the semantics unified from early requirements till implementation. In the targeted

embedded systems domain this means that the final architecture is likely a concurrent or

parallel software program running on one or more programmable processors. Some

functionality might be implemented on specific hardware entities. Such entities will be

integrated in the input or output subsystem or will be designed as co-processing blocks. In most

cases these hardware entities will be controlled from a software driver running on a processor.

In an embedded system, and in most systems, two additional systems must be taken into

consideration. The first one is the “environment” in which the embedded system is placed. This

will often generate inputs to the system or accept outputs from it or it will influence the

operating conditions, not necessarily in a fully predictable way. A second system that is often

present is the “operator”, who also will generate inputs or process the outputs. If this is a

human operator, we have to deal with an entity whose behaviour is not necessarily always

predictable. Often the “operator” might be another embedded system and then the behaviour

should be more predictable, at least if well specified. However, systems are layered. If we

“open” the embedded system or consider the system under development with its environment

and its operator as a new system, we can see that each system can be a component in a larger

system and often it will be composed itself of “subsystem components”, resulting in specific

requirements in order to reuse them. For this paper we stay at the level where such

components are programmable processors or software implemented functions.

Figure 1 The context of systems engineering

7 Early requirements derived from the Virtuoso RTOS | Altreonic "From Deep Space to Deep Sea"

The use of a concurrent (parallel by extension) programming paradigm embodied in an RTOS is

a natural consequence of the interacting entities paradigm. Programming in a concurrent way

implies that the abstract entities (that fulfill specifications) are mapped onto RTOS “tasks” (also

called processes or threads in the literature) and that interactions are mapped onto services

used by the tasks to synchronize and to communicate. In principle, this abstract model maps

equally well to hardware as to software but we focus here on the soft- ware. The target domain

ranges from small single chip micro-controllers over multi-core CPUs to widely distributed

heterogeneous systems that include support for legacy technology. The goal is to program such

systems in a transparent way, independently of the processor or communication medium used.

1.2 Early requirements derived from the Virtuoso RTOS
A precursor to OpenComRTOS was the Virtuoso RTOS [3]. It had its

origin in the pioneering INMOS transputer [4,5], a partial hardware

implementation of Hoare’s Communicating Sequential Processes

(CSP) process algebra [6]. Later Virtuoso was ported to traditional

processors but mostly parallel DSPs. The transputer was a rather

unusual RISC like processor with unique support for on- chip

concurrency and inter-processor communication. On-chip it had a

scheduler with two priority levels, each level supporting round-robin scheduling between the

compile time generated processes. It also had hardware support for inter- process

communication and synchronization using ”channels”. For distributed, embedded real-time

applications, it raised two major issues:

 Two levels of priority are not enough for hard real-time applications. Typically at

least 32 levels of priority are needed with full support for pre-emption and priority

inheritance.

Figure 2 Interacting Entities mapped onto RTOS tasks and services

8 Early requirements derived from the Virtuoso RTOS | Altreonic "From Deep Space to Deep Sea"

 Topology independence: although the transputer had interprocessor links, the

communication between processors had to be manually routed at the application level.

The issue is here mostly one of maintenance. Every little change in the topology could

result in major reprogramming efforts.

Above observations resulted in the adoption in the Virtuoso RTOS of following

architectural principles:

 Use of 255 levels of priority with full pre-emption capability.

 Development of traditional RTOS services like events, semaphores, fifos, mailboxes,

resource and memory maps.

 Use of command and data packets to provide for system level communication.

 Use of system wide identifiers and no local pointers to provide for topology

independent programming.

 Packets carry a priority inherited from the generating task.

 Support for priority inheritance in the scheduler.

9 Why real-time? | Altreonic "From Deep Space to Deep Sea"

2 Real-time embedded programming

While most programming is concerned with performance (often expressed in terms of

achievable throughput), real-time is then often equated to “fast enough”. In the embedded

domain however, the system will often interact with the physical world whereby stringent time

requirements must be met or the system can fail. In such systems, the reactive behaviour is

most important and must always be achieved in addition to the logical correctness of the

application. Such systems are often called “hard” real-time in contrast with “soft” real-time

systems whereby the timing properties are statistical in nature.

2.1 Why real-time?
It can be argued that an architectural paradigm based on entities and interactions does not

need any notion of real-time. Indeed, the temporal properties can be considered as mostly

orthogonal to the “logical” behaviour of a system. In the embedded domain (and most of the

systems we use have embedded aspects), we are dealing with real-world interactions and time

is part of it. Signals that the embedded system must process arrive in real-time and must be

dealt with before the next set of signals arrives. Similarly, the embedded system will act on it

surroundings and real-time requirements apply. Implicitly, we assume here that sampling

theory is applied. Sampling theory dictates that we should at least sample at twice the

bandwidth of the signal. Similarly, when we apply output or control signals this must also be

done with a rate at least equal to twice the bandwidth. If the controlled subsystem has a

mechanical mass and its properties such that inertia determines the dynamic behaviour, we

similarly must take into account its time constant. Sometimes, the output timing can be rather

demanding. An example is audio processing. Our human ear is very sensitive to phase-shifts so

that even when the bandwidth requirements are met, the jitter requirements are stringent

enough that hardware support might be needed.

The purpose of an RTOS is to give the engineer the means to meet such real-time requirements

at the same time as he is meeting the architectural ones (as explained before: mapping abstract

entities into concrete tasks). Timely behaviour is then a property of the tasks in a specific

execution context. This allows designing and verifying a real-time system without having to look

into the details of the algorithms executed by the tasks. The only information needed is what

resources the tasks use (e.g. time in the form of processing cycles and memory). Executing the

task on another processor does not change the algorithm, just the timing and memory used.

Similarly, a concurrent program in itself doesn’t need to be real-time (it’s a matter of defining

the parameters differently). However, it is very convenient that a concurrent program that was

designed to handle real-time, can also handle time-independent programming, e.g. for

simulation purposes. The opposite is often not true.

2.2 Why a simple loop is often not enough
It is useful for the remainder of this paper to present in short our view on embedded

real-time programming. The reader can find a wide range of literature related to real-time

and embedded programming elsewhere if he wants to investigate in more depth.

10 Why a simple loop is often not enough | Altreonic "From Deep Space to Deep Sea"

Let’s start with the term “real-time”. The intuitive notion of real-time is often a subjective

one using terms like “fast” or “fast enough”. Such systems can often be considered as

“soft” real-time, because the real-time criteria are not clearly defined and are often

statistical. However, when the system that

must be controlled is physical, often the

deadlines will be absolute. An example of a soft

real-time system is a video system. The

processing rate is determined by the frame

rate, often a minimum of 25 Hz and

determined by the minimum rate needed for

the eye to perceive the frames as a continuous

image. The human eye will itself filter out late

arriving frames and can even tolerate a missing

frame. Even more soft real-time are on-line

transaction systems. Users expect them to

respond with e.g. one second, but accept that

occasionally it takes tens of seconds. Of course, if

a soft real-time application repeatedly violates

the expected real-time properties the Quality of

Service will suffer and at some point that will be

considered a failure as well.

On the other hand hard real-time systems that miss deadlines can cause physical damage or

worse, can result in deadly consequences if the application is safety critical, even when a

“fail-safe” mode has been designed in. Typical examples are dynamic positioning systems,

machine control, drive-by-wire and fly-by-wire systems. In these cases often the term ”hard

real-time” is used to differentiate. From the point of view of the requirements, hard real-

time means ”predictable” and ”guaranteed” and a single deadline miss is considered a

failure whether its design can tolerate some deviations or not.

Two conclusions can be drawn. First of all, a hard real-time system can provide “soft” real-

time behaviour, but the opposite is not true. Secondly, when safety critical, a hard real-time

system must remain predictable even in the presence of faults. In the worst case it could

fail, but the probability from this happening must be low enough to be considered an

acceptable risk.

Strictly speaking, no RTOS is needed to achieve real-time behaviour in an embedded system.

It all depends on the complexity of the application and on the additional requirements.

E.g. if the system only has to periodically read samples from a sensor, do some

processing and transmit the processed values, a simple loop that is executed forever will

be sufficient. Sources of complexity are for example:

 Putting the processor to sleep in between processing to conserve energy.

 Managing several 100’s of sensors.

 Executing a high number of other tasks with different time constraints.

quality of service definition

communications, networking

(QoS) The performance

properties of a network

service, possibly

including throughput, transit

delay, priority.

Some protocols allow

packets or streams to

include QoS requirements.

http://dictionary.reference.com/browse/throughput
http://dictionary.reference.com/browse/transit%20delay
http://dictionary.reference.com/browse/transit%20delay
http://dictionary.reference.com/browse/priority
http://dictionary.reference.com/browse/protocols
http://dictionary.reference.com/browse/packets
http://dictionary.reference.com/browse/streams

11 Superloops and static scheduling | Altreonic "From Deep Space to Deep Sea"

 Detecting a failure in the sensor circuit.

 Detecting a fault in the processor.

Such requirements are difficult if not impossible to

handle when a simple polling loop is used, but as

most processors will have support for interrupt

handling, the developer can separate the I/O from

the processing. This essentially means that most

embedded systems will have a “hardware” level of

priorities and a “software” level of priorities. The

highest priority level is provided by the Interrupt

Service Routines that effectively interrupts the

lower priority (background) loop. However, the extra

functionalities listed above might already require

multiple interrupts and priorities. The sleep mode of

the processor requires that the circuit generates an

interrupt to wake up the processor and a timer

supporting a time- out mechanism might be needed

for detecting a failure. Also the transmission of the

processed values might require some interrupts.

Hence the question arises how each interrupt must

be prioritised. In the simple example given, this is

not much of an issue as long as we assume that the system is periodic and always has spare

time between samples. What happens however if multiple interrupt sources are present and if

they can be triggered at any moment in time, even simultaneously?

2.3 Superloops and static scheduling
When multiple interrupt sources are present, a simple solution is to distribute interrupt

handling and processing over the available interrupt service routines and the main

polling loop. The separation between “handling” and “processing” of interrupts is

essential because interrupts will be disabled when an Interrupt Service Routine is entered

and worse, the hardware might be designed in such a way that the data is only available

for a short period of time. Hence, while an interrupt is being handled, the hardware must

have a mechanism for holding arriving interrupts, else they will be lost and in the worst

case, the application can fail. Therefore interrupt handling should be kept as short as

possible. On the other hand in the polling loop, the program will repeatedly test for the

presence of the interrupt and when enabled execute the corresponding processing

function.

The issue is that such testing and processing must be done in sequence and that the program

cannot progress unless the interrupt has arrived. Hence, if all interrupts are to be seen and

processed, a static schedule must be calculated and the peripheral hardware must be

configured to be compatible with it. Such a schedule is not necessarily feasible, e.g. when the

arrival rates of the interrupts have a wide span and don’t follow a harmonic periodicity. In

addition, the polling will waste processing cycles that could be used for useful processing and

worst, if for some reason the interrupt does not arrive, the whole system can become blocked.

safety-

critical system definition

A computer, electronic or

electromechanical system

whose failure may

cause injury

or death to human beings

E.g. an aircraft or nuclear

power station.

Common tools used in the

 design of safety

critical systems are redun

dancy and formal

methods.

http://dictionary.reference.com/browse/redundancy
http://dictionary.reference.com/browse/redundancy
http://dictionary.reference.com/browse/formal%20methods
http://dictionary.reference.com/browse/formal%20methods

12 Superloops and static scheduling | Altreonic "From Deep Space to Deep Sea"

From a safety point of view, such a polling loop has no built-in graceful degradation. In

addition, even when no errors occur, a small change in the application can result in the need to

recalculate the whole schedule or in the worst case can result in the application no longer being

schedulable. What we need is a separation of concerns. The logic of processing should be

made independent of its behaviour in time. With a sequential loop (on a sequential processor),

this is not possible because the state space is shared amongst all processing functions and in

addition the time behaviour depends on the temporal behaviour of the rest of the processing

functions. What is needed is a mechanism that divides the global state space into local state

spaces. There are two ways to achieve this:

 Dedicating a processor to each “local” processing function.

 Creating a mechanism that separates the state spaces, even when executed on

the same processor.

The first solution has as side-effect that interprocessor communication can now become an

issue (because communication media are also shared resources). The second solution creates

the concept of “virtualisation”, in essence a mechanism whereby each local processing function

has virtually access to the full state of the processor. Note that this is only really possible

because time is allocated to each virtual state space and this essentially means that to meet the

Figure 3 Superloop schedule with three interrupt sources

13 Rate Monotonic Analysis | Altreonic "From Deep Space to Deep Sea"

real-time requirements at system level, this allocation of time must be carefully done to meet

all real-time constraints.

The two solutions introduce both the notion of “concurrency”, whether physical or virtual.

Most real-time applications will however have “interactions” (e.g. passing data or

synchronisation of a state that was reached) between the local state spaces. In line with the

need for separation of concerns, we need a mechanism that “virtualises” these interactions

independently of whether they take place on different processors or on the same processor.

And last but not least, while we separated the time behaviour from the logical behaviour, hard

real-time systems still need a mechanism for handling time. This mechanism is called

scheduling. We have seen a static version of it in the previous sections, called static scheduling.

It assumes perfect knowledge about the system when it is built and assumes that the system’s

operating parameters are static and will never change. As outlined, this is seldom the case,

certainly when failure conditions are taken into account. In general, a more dynamic scheduling

mechanism is preferred. The scheduling can be based on a measurement of time or on the

time already used. The most widely used mechanism is based on priorities, a ranking of the

processing functions based on an analysis that combines the periodicity and the relative

processing load. This mechanism is called Rate Monotonic Scheduling (RMS). OpenComRTOS is

a RTOS based on the assumption that a Rate Monotonic Analysis (RMA) is executed, resulting

in a system wide priority ranking of the scheduled application functions. Nevertheless, the

design allows for the implementation of different scheduling policies.

2.4 Rate Monotonic Analysis
RMA was first put forward in 1973 by Liu and Layland [7]. Although it doesn’t solve all issues it

provides a good framework that is simple and most of the time it is applicable. The algorithm

states that given N tasks with a fixed workload that must be active with a fixed periodicity (with

the beginning of the next period being considered as the deadline for the previous period), all

deadlines will be met if the total processor workload remains below a value of 69% and a pre-

emptive scheduler is used with each task receiving a priority that is higher if the task has a

higher periodicity. The upper bound of 69% is obtained for an infinite number of tasks. For a

finite number of tasks and especially when the periods are harmonic, the upper bound can be a

lot higher, often even observed to be above 95%. Figure 4 illustrates RMA scheduling of two

tasks. In general RMA defines the scheduleability criterion (on a single processor) as follows:

∑(𝐶𝑗/𝑇𝑗) ≤ 𝑈(𝑛) = 𝑛. (2

 − 1)

with:

 Cj being the worst case execution time of taskj ;

 Tj being the execution time of taskj ;

 U (n) being the worst case utilisation with n tasks;

14 Rate Monotonic Analysis | Altreonic "From Deep Space to Deep Sea"

Figure 4 Two periodic tasks scheduled with RMA

According to the equation a system with one task has an utilisation of 1.0 (U (1) = 1.0).

For an unlimited number of tasks the utilisation converges to 0.69 (U (∞) = 0.69).

In practice the results of the first RMA algorithm are a (pessimistic) approximation and rely on

some assumptions that are seldom met in real applications. For example, all tasks are assumed

to be independent (hence they all are activated on independent events and do not synchronise

or communicate with other tasks, nor do they share any resources). Also task activation is

assumed to be instantaneous and the processor provides a fixed processing power (hence no

cache effects). Even if often the 69% level is used as a maximum load in any case, this means

that to remain on the safe side, it is often better to keep the overall CPU load lower than the

figure obtained. On the other hand, if only a few tasks are used and the interactions are limited,

often the application will miss no deadline even if the processing load is higher than 69%. The

CPU load can also be higher if the periodicity of the tasks is harmonic. Hence RMA has to be

seen as a guideline that must be complimented with a detailed analysis, profiling and especially

measures to give the application more margin. It should also be pointed out that if a RMA

schedule misses deadlines for the lower priority tasks that the higher priority tasks can meet

their deadlines. This property of pre-emptive priority based scheduling is e.g. useful for creating

a highest priority task that is only activated when exceptions have to be handled.

A very detailed and comprehensive analysis of RMA is given in Briand and Roy [8]. It also

discusses the follow-up RMA algorithms that were developed later on taking into account

realities like blocking times (using shared resources), inter-task dependencies and distributed

systems. In all cases this results in higher boundaries for the CPU workload. The most

important change to the basic RMA algorithm is that for determining the task priorities, one

should not use the full period but the pseudo period that is derived by taking into account that

the deadline of a task happens often before its period has expired. This is called Deadline

15 The application of RMA in OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

Monotonic Analysis (DMA). More extensive descriptions as well as algorithms for schedulability

analysis for a wide range of RMA scheduling policies can be found in Ref [9].

It must be said however that for distributed systems no real RMA algorithm exists,

although tools like MAST [10] allow verifying that a given schedule is feasible. In practice a

system design with adequate priorities will give good assurance that all deadlines can be

met.

An important observation is also that a rigorous and static design might not always give

the most safe system if the first missed deadline results in catastrophic behaviour. Many

real-world systems can tolerate missed deadlines if these misses have a low probability and

if they are spread in time (not bursty). Of course, this means that the system design must

take this into account. A classical example is a brake-by-wire system. It must be designed for

the maximum speed of the car and hence often the maximum rate will be used all the time.

Even at this highest rate, there will be margin as the time constant of the mechanical system

will be lower. If the car then operates at a lower speed, the control rate can be lowered as well

and missing control signals from time to time (but not in continuous bursts) will in the worst

case only lower the ”quality” of braking, but this is often not catastrophic.

2.5 The application of RMA in OpenComRTOS
In OpenComRTOS it was decided to support priority based pre-emptive scheduling as the

standard scheduling policy. In [8] this is called Highest Priority First. Every task can be

assigned its own priority based on an off-line Deadline Monotonic Analysis (DMA). It must

be said however that DMA assumes that all tasks execute on a single processor, whereas

OpenComRTOS supports multi-processor systems. Hence priorities are considered a

system-wide scheduling parameter and the DMA should still hold locally on each

processor.

OpenComRTOS was also designed to clearly separate Interrupt handling (in ISRs) and interrupt

processing (in a task). Good design practice dictates that a minimum time is spent in interrupt

handling. This improves the responsiveness of the system and hence, because interprocessor

communication often requires fast interrupt handling, it will reduce the latencies. The latter is

especially important for multiprocessor systems as the processing can be distributed over

several processors and the scheduling delay includes communication delays. Similarly, in the

design of a network-centric RTOS it was recognised that delays can also be the result from

implementation artefacts. Hence, any activity in the RTOS or its system level drivers is done in

order of priority. This minimises the point- to-point latency. Typical cases where this can be

important are waiting lists and interprocessor communication. This means that one should be

able to ignore the different scheduling latencies as the communication delay can be more

important (especially on slow-speed networks). This latency is a combination of several factors

that are difficult to quantify. Factors are: communication load, communication set-up time,

transmission delay and receiver latency. Therefore, good profiling tools are a necessity. DMA

then provides a good approximation and starting point. For extreme processor loads

(typically when the task’s individual processing time is of the same order of magnitude

as the system latencies), this assumption does not hold and often only static scheduling or

dedicating processors to such loads is the only acceptable solution.

16 The issue of priority inversion and its inadequate solution | Altreonic "From Deep Space to Deep
Sea"

A small note however on the assignment of the priorities. In our case, these are assigned

at design time and the scheduler is a straightforward Highest Priority First one. Research on

dynamic priority assignment [11] have shown that algorithms that use Earliest Deadline First

(EDF) algorithms (the priority becomes higher during execution for the tasks whose deadline is

the nearest) can tolerate a workload of up to 100%. There are however three reasons why this

option was not further considered. The first one is that the implementation of an EDF scheduler

is not trivial because measuring how far a task is from its deadline requires that the hardware

supports measuring this. As this is often not the case, one has to fall back on software based

solutions that periodically record the task’s progress. For reasons of software overhead, this

must be done with a reasonable frequency; typically about one millisecond which means that

fine-grain microsecond EDF is not feasible (one millisecond can be quite long for a lot of

embedded applications). The second reason is that no algorithms are known that allow

calculating the EDF schedule on a distributed or multicore target. The third, but fundamental

reason is that an EDF schedule has no graceful degradation. If a task continues beyond its

deadline, it can bring the whole system down by starvation, whereas a static priority scheme

will still allow higher priority tasks to run. The highest priority task can be activated by a time-

out mechanism so that it can terminate such a run-away task before the other, still well

behaving tasks are starved. Hence, if EDF scheduling is used, it is better to restrict this to a

maximum priority level within a standard priority based scheduling scheme. A similar

observation will be made in the next section when discussing priority inheritance schemes.

A general remark must be made here. An RTOS in itself does not guarantee that all real-

time requirements will be met. Designers must use schedulability analysis and other

analyses like simulation and profiling to verify this before the application tasks are

executed. However, an RTOS must provide the right support for executing the selected

schedule. In general, this means a consequent scheduling policy based on priorities with

pre-emption capability and with support for priority inheritance. OpenComRTOS provides

this complemented with a runtime tracing function allowing profiling the temporal behaviour at

runtime.

2.6 The issue of priority inversion and its inadequate

solution
A major issue that has a serious impact on predictability is the presence of shared resources in

an embedded system. A shared resource is often associated with a critical section or an

access protocol. The latter are needed to assure that only one task at a time can modify the

status of the shared resource. Examples are:

 A shared buffer that must be read out before new data is written into it,

 hardware status registers that set a peripheral in a specific state,

 a peripheral that can handle only one request at a time.

Note that a shared resource is a concept at a higher level of abstraction than the physical level

but it will often be associated with it. It can be used to protect a critical section (e.g. the

update of pointers in a datastructure) but it is not a critical section in itself. The critical section is

a sequence of steps of the updating algorithm that must be done in an atomic way to guarantee

17 The issue of priority inversion and its inadequate solution | Altreonic "From Deep Space to Deep
Sea"

that the datastructures remain coherent. It should also not be confused with disabling

interrupts on a processor. The latter is a hardware mechanism that is processor specific and is

designed to prevent other external interrupts from interfering with the intended program

sequence.

In the context of a concurrent program, resource locking means that the system assigns

temporarily ownership of the resource to a specific task until this task releases the resource. If

more than one task requests to use the same resource, the second and subsequent requesting

tasks cannot continue and will be blocked until the resource is released by its current owner.

During the time a task owns a resource, it can become descheduled, e.g. because another

higher priority task becomes active, the task requests a second resource, the peripheral

associated with the resource is delayed itself or the task needs to synchronise with another task

that has lower priority. In all cases, the resource owning tasks and other waiting tasks can be

blocked from progressing which means that deadline violations become possible even if the

priorities were correctly assigned and the application is schedulable with known blocking times.

A very important conclusion to draw at this point is that a good design will try to limit the

blocking times as much as possible and should avoid the need to protect the access to

resources at all. This might require a change in the architecture of the system but from the

reliability and safety point of view this is a cheap preventive measure.

The real issue comes in when we also analyse what

can happen as a function of the assigned priorities.

Assume a high priority task requests a resource that

is owned by a low priority task. As it is a low priority

task, middle priority tasks that are ready to run will

pre-empt the lower priority task and if they have

lengthy processing times, they will block the high

priority task even if they don’t need the resource at

all. This problem is called the priority inversion

problem and was made famous in 1977 when the

Mars Pathfinder [12] kept resetting itself as a result of a continuously missed deadline, which

was caused by a classical case of priority inversion as described above whereby priority

inheritance was disabled by default in the RTOS.

Is there a cure for this problem (assuming that the system architect did his best in minimising

the need for resource locking)? The answer is unfortunately no, but the symptoms can be

relieved. The solution is actually very simple. When the system detects that a task with a higher

priority than the one currently owning the resource is requesting it, it temporarily boosts the

priority of the current owner task, so that it can proceed further. Priority inversion will be

avoided. In practice different algorithms were tried out, but in general the only change made is

that the boosting of the priority is limited to a certain application specific ceiling priority. Else,

the scheduling order of other tasks requiring a different set of resources can be affected as well.

Using the ceiling level, we can also guarantee that higher priority tasks (like monitor tasks) will

run when activated and not being blocked by a lower priority task that was boosted.

18 The issue of priority inversion and its inadequate solution | Altreonic "From Deep Space to Deep
Sea"

If we analyse the issue of blocking in the context of a real system, we can see however that the

priority inheritance algorithm does not fully solve the blocking issue. It relieves the symptoms

by reducing the blocking times but a good design can maybe avoid them in the first place. The

resource blocking issue is part of a more general issue. In essence, a concurrent real-time

system is full of implicit resource requests. For example, if a high priority task is waiting to

synchronise with a lower priority task, should the kernel also not boost its priority? To make it

worse, if such a task is further dependent on other tasks and we would boost the priority can

this not result in a snowball effect whereby task priorities are boosted for all tasks and of

course, we would have no gain. Or assume that the task is waiting for a memory block while a

lower priority task owns such a memory block. Or assume that a task acquires a resource, which

makes it ready and is put on the ready list. But while it waits to be scheduled a higher priority

task becomes ready first and requests the same resource, which means that the first task that

was ready should be descheduled again and the resource given to the higher priority one.

While all these observations are correct, often such situations can be contained by a good

architectural design. The major issue is that implementing this extra resource management

functionality is not for free and the tests they require are executed every time, resulting in a

non-negligible overhead. The conclusion is that in practice resource based protection must be

avoided by design and that priority inheritance support is best limited to the traditional

blocking situations. In the case of the implicit resource blocks, if they pose an issue to the

application, they can be reduced to a classical priority inversion problem by associating a

resource with the implicit resource. E.g. if a memory block is critical, associate a resource at the

application level and normal support for priority inheritance will limit the blocking time. Else

make sure that the system has additional memory blocks available from the beginning.

19 The issue of priority inversion and its inadequate solution | Altreonic "From Deep Space to Deep
Sea"

Figure 5 Three tasks sharing a resource first without and then with priority inheritance support

20 Distributed priority inheritance in OpenComRTOS | Altreonic "From Deep Space to Deep Sea"

2.7 Distributed priority inheritance in OpenComRTOS
While implementing support for priority inheritance for a single processor RTOS is

straightforward, implementing it in a distributed RTOS is more complicated because task states

are distributed and change over time. On a single processor, the RTOS scheduler will examine

the resource current owner when a task is requesting a resource. If the owner’s priority is

lower, then it will put the requesting task in the resource waiting list and boost the priority of

the current owner. When the owner releases the resource, the RTOS scheduler will assign it to

the highest priority task in the waiting list.

On a multi-processor system (single chip many/multicore, networked), on each node the kernel

scheduler is managing the resources residing on its node. Requests for the resource can come

from local tasks, remote tasks, the owner task can be residing on the same node or on

another node, can be waiting on still another node or it can be in transit from one

node to another. Hence, the local kernel scheduler must determine where the task

resides at the moment of the resource request, send a priority boost request to the node

where the task is residing and when the resource is released, lower the owner task’s

priority to its original priority.

While this approach works well, the inherent communication delay of the inter-node

communication can result in side-effects. For example the owner task might have issued a

request that is forwarded to another node just before the boost request arrives. In practice this

means that the distributed priority inheritance implementation is a best effort approach.

The effects are mitigated if all tasks involved have a relative high priority, whereby the blocking

is less problematic and if the network has relatively low communication delays. The boosting

and reduction of the blocking time is the greatest when the owner task has a relatively low

priority versus the requesting task. In that case, the prioritised communication layer will

automatically assure that the priority boost request arrives first. This also means that such a

priority boosting mechanism is most useful if the use of the resource is relatively long, i.e.

longer than the transmission latency in the network.

Figure 6 Event trace of distributed priority inheritance in OpenComRTOS

21 Next generation requirements | Altreonic "From Deep Space to Deep Sea"

2.8 Next generation requirements
In the first part of this paper, we have limited ourselves to the handling of real-time

requirements. An unspoken assumption was that the system is fully defined at compile time.

For most embedded applications this is the case. However, as applications are becoming

more dynamic and adaptive, the complexity increases as well. In such applications,

meeting stringent real-time requirements is still often a prime requirement but it is not

sufficient. The real-time requirements will have to be met when multiple applications execute

simultaneously with a variable amount of available resources. In the extreme, this also means in

the presence of faults resulting in a number of resources no longer being available on a

permanent or temporary basis.

We will illustrate this with two use cases for which the network-centric OpenComRTOS

could provide the system level software.

The first use case is a next generation electric vehicle. Such a vehicle will be fully

controlled by software and electronic components (“drive-by-wire”) and likely have a

distributed power and wheel control architecture whereby for each wheel traction

control is combined with active suspension control, stability, anti-slip control and even

braking. Many components can fail or show intermittent failures, e.g. sensors can fail,

wires can break, connectors can give micro-cuts (very short absence of electrical contact due

to vibrations), memory can become corrupted, processors can fail, etc. While the design

should be robust enough to make such failures very low probability events, over the

lifetime of the car such occurrences are certain. Practically speaking this means that while

the system can be designed assuming that all resources are always available; the designer

must provide additional operating modes that take into account that some resources

are not available for meeting all requirements. In the simplest case this can mean that

when one wheel controller fails, the processing is immediately redistributed over the

three still fully functional units. Or this can mean that the system switches to a degraded

mode of operation with a different set of tasks using less compute intensive algorithms.

The second use case is a next generation mobile platform. It is envisioned that such a

platform will have tens of processing nodes, execute multiple application functions with some

functions showing a variable processing load depending on the data being processed (typical for

multimedia and image processing). In the worst case, the processing load can even surpass

temporarily the available processing power. On the other hand such applications can often

tolerate a few missed deadlines. However, such a mobile platform loaded with a dynamic set of

tasks, poses additional constraints. E.g. when using wireless connections, bandwidth will vary

over time, processing power might be variable because of voltage and frequency scaling

techniques to minimise power consumption and available memory will vary depending on the

use by other applications. Many of the processors used for such applications are so-called many

or multicore chips are essentially chips with in silicon networks (NoCs) over which CPUs as well

as high performance peripherals are connected. The NoC as well as the peripherals, the on-chip

as well as off-chip memory are all resources that can be shared. In the Figure 6 such an

advanced multicore chip supported by OpenComRTOS is shown. Newer versions also include a

quad-core ARM processor.

22 Next generation requirements | Altreonic "From Deep Space to Deep Sea"

What these two use cases illustrate is that an embedded real-time application is becoming

more challenging for following reasons:

 Applications can no longer be fully statically defined.

 Some applications have a variable processing load.

 The system software must not only schedule processing time as a resource, but

also other system resources like bandwidth, processing power, memory and even

power usage.

 The system will have hard real-time constraints as well as soft real-time

constraints.

 The system will have different “modes” (each consisting of a coherent set of

states).

 Fault tolerance is not to be considered as an exception but as a case where the

system has less resources available.

The result is that such an embedded system becomes “layered” and time as a resource is

not the only one that must be scheduled. Such a system will need to schedule the use of

several types of resources, although the final criterion remains meeting the various real-

time requirements. In the guaranteed mode of operation we find back the traditional real-

time scheduling. Rate Monotonic Scheduling provides for meeting the time properties whereas

compile-time analysis assures that all other resources are available. In the extreme case this

includes providing for fault tolerance because the system has to be designed with enough

redundant resources to cope with major failures.

The next layer is then a best-effort mode in which the properties are guaranteed most of the

time, eventually with degraded service levels. For the time properties this means we enter the

domain of soft real-time, but often at the application level this means that the system offers a

statistically defined level of quality of service level. A typical example is generating an image

with less resolution because not enough processing power was available during the frame time.

In the extreme case this corresponds with a fail-safe mode of operation whereby the quality of

services is reduced to a minimum level that is still sufficient to stop the system in a safe way.

Finally, the last layer is one where essentially nothing is guaranteed. The system will only

make resources available if there are any left. Statistically, this can still be most of the time

unless a critical resource like power is starting to fail, and the system then was designed to put

the processor in a “sleep” mode to e.g. stretch battery time.

What we witness here is a transition from a statically defined hard real-time system with fully

predictable time behaviour, but possibly catastrophically failing, towards a system where the

design goal is defined as a statistical quality of service (QoS) at the application level. Such

a system must still be able to meet hard real-time constraints in a predictable way but must

also offer different operating modes corresponding with a graceful degradation of the services

offered by the system as a whole. Practically speaking, when a processor fails, it will often be

catastrophically although processors with a MMU (Memory Management Unit) and appropriate

system software can contain the failure to the erroneous task or process without affecting the

rest of the application, unless there are dependencies. Most embedded processors however

23 Next generation requirements | Altreonic "From Deep Space to Deep Sea"

will need a hard reset to recover from such a fault. Hence, such a system will need redundancy

of hardware resources, be it as part of a distributed system, be it as part of a multicore chip.

These next generation requirements were not addressed in the original OpenComRTOS

project, but the fact that OpenComRTOS supports programming a multicore and distributed

system in a transparent way facilitates addressing such requirements.

Figure 7 Advanced multicore chip: Texas Instruments C6678 DSP

24 Effects of caching on predictable timings | Altreonic "From Deep Space to Deep Sea"

3 Hard real-time on advanced multi-core chips

3.1 Effects of caching on predictable timings
A side-effect of the very tight integration of components on a single chip is that scheduling

becomes increasingly less predictable. This is largely due to the mismatch between the CPU

clock speed, the speed of the external memory and the arbitrating logic that manages the

peripherals. The total memory often needs to be large as available processing speed often

grows in line with the code size and the data to be processed. The industry has adopted two

main approaches to tackle this issue. The most obvious one is to allow more computational

concurrency so that the scheduler can switch to another context while the communication

happens. In the ideal case this requires the use of DMA engines and a fast context switching

support. The most often used technique is to use small (by technological necessity) but fast

internal caches. When code and data are in the cache close to maximum performance is

obtained, but as caches are limited in size, this is not guaranteed all the time. When code and

data are not in the cache, deviations of a factor 20 to 100 are not uncommon.

Figure 8 Freescale PowerPC 744X block diagram

The following graph shows interrupt latency measurements on a 1 GHz PowerPC (e600 family),

whereby for the sake of the measurements the cache is periodically flushed. The measurements

were taken by setting a hardware timer that periodically interrupts the processor with stress

loading the CPU using a semaphore loop (which has very low processing load but invokes

constantly context switches). The time taken to read the timer value in the ISR, subsequently in

25 Effects of caching on predictable timings | Altreonic "From Deep Space to Deep Sea"

a waiting task is recorded. This time interval is called the interrupt latency. Four cases were

measured and plotted (logarithmic scale):

 All caching disabled.

 L1 Data cache and L2 cache enabled.

 L2 and L1 data and program cache enabled.

 L2 and L1 cache enabled, but the caches are periodically flushed.

The first observation to make is that the enabling of the caches has a serious impact on the

performance. When all caches are enabled, the performance gain is about a factor of 50. This is

mainly due to the access speed to the external memory. On the other hand, the cache flushing

has less impact than one would expect. This is due to the architectural implementation of the

cache logic whereby a complete cashline (32 bytes) is cashed whenever non-cached data or

code is accessed. Hence, this mechanism mitigates the effect although we still see that

interrupt latencies jump with a factor 5 (but way below the values with no caching).

This was confirmed by executing a few measurements using the on-chip performance monitor

unit. This unit allows measuring the time more accurately and also records instruction and data

caches misses.

 Ten data accesses (read operations) from consecutive memory locations take 122

instructions executed in 167 CPU cycles when caches are enabled.

 Ten data accesses from non-consecutive locations takes 140 instructions executed in

8959 cycles when both caches are disabled.

 Ten data accesses from non-consecutive locations takes 137 instructions executed in

1234 cycles when all caches are fully enabled.

Figure 9 Interrupt latency to ISR and task level on a 1 GHz PowerPC (logarithmic scale)

26 Effects of caching on predictable timings | Altreonic "From Deep Space to Deep Sea"

We noticed that even the hardware based performance monitor recorded erratic results for the

number of instructions but also for e.g. instruction misses, while the code easily fitted in L1

cache and no other software was loaded. This statistical spread would be worse when multiple

cores share the same memory and multiple peripheral devices are active. This spread cannot be

mitigated unless one changes the hardware architecture. Hence a more statistical approach to

QoS scheduling is needed as well.

 Next a measurement was done using task interaction using RTOS kernel services. The test

program is like in Figure 10 whereby each test used a different type of OpenComRTOS hub

(port, event, semaphore, fifo), once with a 1024 bytes datatransfer and once with no data

transfer. The timings are in microseconds and averaged over 1000 loops with 2 tasks using the

service. Hence, each loop consists of 4 task switches and 4 task-to kernel interactions.

What we can notice is that the impact of code or data not being in cache is quite dramatic for

the temporal behaviour. The difference ranges from a factor of about 30 to about 130. This is

not only the impact of the slow external memory (133 MHz SDRAM) but also due to the

presence of an on-board controller that arbitrates in a round-robin fashion between the

external peripherals, the processor and the memory. The latter is an important observation.

Worst Case Execution Times are often determined by using a detailed simulation model of the

processor. While the CPUs themselves are becoming very complex, using every trick to provide

higher peak performance, the integration of peripherals on the chip make that almost

impossible, partly because the details of the design are not known. In addition, the processor

(or rather the chip) will be integrated with other chips on a board, often arbitrating between

the processor chip, on-board external memory and external peripherals at a slower clock speed

Data
size

Interaction type Caches
disabled

L2 enabled L1 data
cache and
L2 enabled

L1 data
and

program
and L2

enabled

1024 Port 1333 341 73.5 10.9
 Event 216 102 15.0 3.97
 Semaphore 216 102 15.1 3.97
 Fifo 1844 551 103 14.4

0 Port 215 103 15.0 3.98
 Event 213 101 14.9 3.97
 Semaphore 213 101 14.9 3.95
 Fifo 216 103 15.2 4.07

Figure 10 Semaphore example used for benchmarking

27 Inter Core Communication Performance | Altreonic "From Deep Space to Deep Sea"

than the internal clock of the processor chip. Often this will include undocumented firmware

(e.g. in ASICs or FPGA). Hence, not only are worst case timings now difficult to predict, they also

are board and application specific. In the measurements above, worst case timings for task

latency were obtained of more than 200 microseconds (no caching) versus 4 microseconds (all

caching enabled). These 200 microseconds were based on 1000 samples and is likely still below

the real worst case timing if a prolonged test would be executed in the context of a real

application. To mitigate this risk, it is clear that a static design is no longer adequate and more

statistical approach must be taken.

As a summary, the ISR and task interrupt latencies histograms (limited to 1000 measurements)

were plotted on single graphs with the different cache modes enabled.

Figure 11 Interrupt to ISR latency

Figure 12 Interrupt to task latency

These graphs clearly show that the caches reduce the absolute interrupt latencies, but also the

statistical spread, although the first sample measurement is always 5 to 10 times longer than

the subsequent measurements (as we noticed in the time series when caches are flushed).

3.2 Inter Core Communication Performance

Figure 13 Application Diagram for the Throughput Measurement

To measure the application level inter core communication throughput, i.e. the usable Task-to-

Task bandwidth when developing an application, we performed the following measurements.

The benchmark system consists of two Tasks: a sender task and a receiver task, communicating

using an intermediate OpenComRTOS port-hub. The figure shows the application diagram of

the system. The sender task sends a Packet to the Port-Hub from which the receiver task

receives it. The Port-Hub interactions are done using waiting semantics, which means that the

sender task has to wait until the receiver task has synchronised with it in the Port-Hub. The

port-hub copies the payload data contained in the packet from the Sender-Task to the L1-Packet

from the Receiver-Task, and then sends acknowledgement packets to both Tasks. We measured

how long it takes the receiver task to receive 1000 times a data packet of a specific size. To

28 Inter Core Communication Performance | Altreonic "From Deep Space to Deep Sea"

perform the initial synchronisation the receiver task waits for a first communication to take

place before determining the start time. Please note that the sender task and receiver task

synchronise in the port-hub, thus the sender task can only send the next packet, after it has

received the acknowledgement packet that the previous transfer was performed successfully.

In the following section we outline measurements done on two different types of multi-core

targets. The firs one is the Intel 48-core experimental chip and the second one the already

mentioned Texas Instruments C6678 8-core DSP.

3.2.1 Intel SCC

The Intel SCC is composed of 48 Pentium cores (running at 533 MHz), each with 16 kB data and

program caches and 256 kB L2 cache. Each tile, which consists of two cores, provides a 16 kB

large Message Passing Buffer (MPB). In the link driver implementation we assigned each core of

the tile 8 kB of this buffer, which it uses as an input port for the OpenComRTOS drivers. This

means that each core reads the messages meant for it from its part of the MPB. To send a

message each core writes the message directly into the MPB of the core the message is

intended for, i.e. we establish a full mesh on the Intel-SCC, leaving all the routing decisions to

the underlying routing network. Inside the MPB the data is organised using a lock free ring

buffer implementation, where the writer and reader Task do not need to lock each other out.

However, it is still necessary to prevent that more than one writer tries to gain access to the

MPB in parallel, thus there is one locking operation involved. The lock is represented by an

atomic variable. Having an RTOS means that it is necessary to inform the reader core that new

data has arrived, this is achieved by the writer-node issuing an Interrupt Request (IRQ) to the

reader-node. Upon receiving the IRQ, the reader-node reads out the data, translates the

transfer packet into a local packet and then passes it to the Kernel-Task for processing.

3.2.2 Texas Instruments C6678 8-core DSP.

The TI-C6678 contains 8 cores running at 1 GHz, Figure 7 gives a block diagram of the chip. Each

core has 32 kB L1 cache for data and program and an additional L2 cache of 512 kB (used as

SRAM). The 8 cores share also a fast 4 MB SRAM and external DDR3 memory. The chip has also

an on-chip queue management system, Ethernet switch, DMA and SRIO amongst other, all

connected over a fast TeraNet switching network. The complexity is high and the chip has about

1000 interrupt sources and a 3 level interrupt controller. Impressed, we called it a ”RoC" (Rack

On a Chip). The inter core communication was implemented by using the Queue Management

Sub System (QMSS) available in the chip and exchanging pointers to blocks of the 4 MB shared

SRAM. The queues that are used for this purpose can issue an interrupt to their CPU if data has

arrived, providing an easy scheme to communicate.

3.2.3 Measurements on the Intel-SCC

When distributing the tasks over different Nodes in the system, the data will be transferred

between the two nodes using link drivers and using the on-chip communication mechanism.

These link drivers transfer only the used part of the data part of the packets. We measured the

following different system setups, with different payload sizes:

 Single-core: In this setup all tasks and the hub are on the same core. Thus no inter core

communication is involved.

29 Inter Core Communication Performance | Altreonic "From Deep Space to Deep Sea"

 Multi-core: Afterwards the benchmark was distributed over two nodes, in the following

way:

 node1: Sender task

 node2: receiver task and Port-Hub

In this setup we measured with different numbers of hops (see (Manual:Intel:SccProgGuide for

details) between the two cores:

 No-Hop: Node1 on core 10 and Node2 on core 11

 Hop: Node1 on core 10 and Node2 on core 8

 8-Hops: Node1 on core 10 and Node2 on core 36

Figure 14 Intel-SCC Throughput over Packet Payload Size

This figure gives the measured results for the different systems. What sticks out is that the

single core example goes into saturation at around 20 Mbyte per second, while the distributed

versions achieve a higher throughput of up to 33 Mbyte per second.

There is also a strange jump in throughput from payload sizes 128 byte to 256 byte, for the

distributed version, which we do not observe in the single core version. Furthermore, we see a

strong influence of the routing network which nearly halves the throughput between the No-

30 Inter Core Communication Performance | Altreonic "From Deep Space to Deep Sea"

Hop and the 8-Hop versions, thus the location of the Nodes and their distance matters on the

Intel-SCC.

The curve labelled `Virtual Core 10 to 11' is moving the data, by transferring the ownership of a

shared buffer from core 10 to core 11. This is done by transferring the buffer information

(address, size, resource-lock-id) from core 10 to core 11 using a port-hub.

Once core 11 has this information it locks a resource, to avoid unintentional access, copies the

data, and then releases the lock. The achieved throughput is about half of what we achieved in

the single core version.

The reason for this is that the buffer is placed in shared memory which halves the achievable

throughput. The throughput of the bare version, i.e. without OpenComRTOS running, just a

main and small runtime layer, drops from 17.4 Mbyte per second, when copying from private

memory to private memory, to 10.3 Mbyte per second when copying from shared memory to

private memory.

3.2.4 Impact of core distance on timings

Figure 15 Multicore semaphore loop test on Intel SCC showing hop delay

While on the TI chip all cores can directly communicate (there are only 8 of them) The Intel SCC

provides an additional test possibility because the 48 cores communicate over a NoC with

routers. These routers introduce addition ``hop'' delays. We have measured the semaphore

loop for all possibilities (from 0 hops for directly connected cores to 8 hops for those furthest

31 Inter Core Communication Performance | Altreonic "From Deep Space to Deep Sea"

apart). The semaphore loop times then range from 15049 cycles to 20684 cycles (compiled with

-O3). In itself, these timings are quite reasonable given the extra hop delays, that range from

280 to 385 cycles in one direction (calculated by dividing the extra hop delay of a semaphore

loop by 2). This hop delay is not only due to communication latency but also to extra context

switching by the driver and the Kernel-Task, interrupt handling and the need to invalidate the

cache.

3.2.5 Measurements on the Texas Instruments C6678 8 core DSP

The TI-C6678 evaluation board available to us was clocked at 1 GHz, thus all measurements

were done at this frequency. Another point to mention is that In the initial tests none of the

DMA units provided by the TI-C6678 have been used for these measurements, thus the DSP-

Core had to spend all its cycles to move the data.

Figure 16 TI-C6678 Throughput over Packet Payload Size

The figure gives the throughput measurements for the TI-C6678 @ 1 GHz, for both the single

core (`Core 0 to 0') and the distributed version (`Core 0 to 1'). The measurement setup is

described as follow:. In case of the single core measurement, the data and the code were

completely within the 512 Kbyte large L2-SRAM of core 0. This is possible because the

architecture permits to use the L2 cache as SRAM. For the distributed version we used the

Queue Management Sub System (QMSS) queues to transfer descriptors of transfer packets

between the cores. The queues 652 and 653 were used, generating an interrupt when data is

32 Inter Core Communication Performance | Altreonic "From Deep Space to Deep Sea"

pending on them. The shared transfer packets were located in the Multicore Shared Memory

(MSM), constituting 4Mbyte of fast memory shared between the cores. This memory is part of

the Multicore Shared Memory Controller (MSMC) , which interfaces the eight cores to external

DDR-SRAM. For the single core version we achieve a top throughput of 2695 Mbytes per second

using packets with 32 Kbyte payload. The distributed version achieved a maximum throughput

of 1752 Mbytes per second with the same payload. In both cases we have not yet reached the

saturation of the system, thus the total throughput will be higher, if we increase the packet

payload size.

Like for the Intel-SCC we've also implemented a measurement of the virtual bandwidth, using a

shared buffer. With a buffer size of 32 Kbyte we achieved a throughput of 772 Mbyte per

second @ 1 GHz , when the shared buffer is located in the MSM, and we copied to the L2-SRAM

of core 1 (`Virtual Core 0 to 1, MSM to L2'). If the shared buffer is located in the L2-SRAM of

core 0 (`Virtual Core 0 to 1, L2 to L2'), the throughput we achieve is 45 Mbyte per second @ 1

GHz. Currently we investigate why the copy between the L2-SRAM of the cores does provide so

little throughput.

When utilising the experimental driver for the EDMA3 peripherals of the TI-C6678, and EDMA3

unit we achieve a throughput of 4041 Mbyte per second with a buffer size of 128 Kbyte,

transferred between two buffers in the L2-SRAM of core 0. The advantage of using the DMA

unit over using the CPU for copying or moving data is that during the transfer the CPU can

perform other Tasks, thus the transfer happens in parallel to the processing.

3.2.6 Conclusions from these measurements

The first part of the paper explained the design principles of OpenComRTOS that minimise the

impact of the distributed processing on the hard real-time behaviour. Due to being built around

the concept of prioritsed packet switching the performance degradation caused by additional

middleware layers are avoided in OpenComRTOS systems. This not only results in a better

performance, but also in smaller memory requirements, less power consumption and more

real- time predictability. The architecture of OpenComRTOS is ideally suited for the multi/many

cores systems such as the Intel-SCC and the TI-C6678, because it makes it very easy to use all

processing power without having to worry about the details of the underlying hardware.

What has become clear in the performance measurements is that both the Intel-SCC and the TI-

C6678 are complex architectures requiring a lot of attention to achieve best performance and

predictable real-time behaviour. The developer must be very careful in placing data and code in

memory and selecting the communication mechanism. In case of the Intel-SCC the access to the

DDR3 memory has a very long latency with a minimum of 86 wait states, and is only available

over the system wide shared routing network, which causes additional wait states. The

approach taken in the TI-C6678 with a dedicated switching network (TeraNet) provides a much

better throughput to the shared memory resources. Additionally, each core has its own 512 kB

of L2-SRAM which can be used to store code and local data, an approach not possible in case of

the Intel-SCC. A local RAM of 512 kB might sound little but for OpenComRTOS it is more than

sufficient, due to its small code size of around 5 kB. This leaves in many cases sufficient space

for user applications and device drivers.

33 Inter Core Communication Performance | Altreonic "From Deep Space to Deep Sea"

The tests have also shown that shared memory presents some pitfalls, similar to the ones global

variables represent in multi-threaded environments. Not only makes it the bus structure very

complex, it also makes it slow compared with the speed of the CPUs and it poses more safety

and security risks, e.g. the cache must also be invalidated at the right time. Therefore, having

large and local low wait state memory for each core with a fast dedicated communication

network set up in a point-to-point topology with DMAs improves performance, and improves

reliability when this memory can be marked as private to the core, thus preventing external

cores from accessing and potentially corrupting it. This is an important issue for safety and

security critical systems. Finally, multi/manycore designers should be aware that concurrency

even on a single core combined with low latency is beneficial as it allows to reduce the grain

size of the computations without suffering much overhead. It also increases throughput by

overlapping computation with communication.

The communication infrastructure provided by the TI-C6678, with its packetisation and

hardware-queue support, is similar to the internal architecture of OpenComRTOS, whereby all

interactions are implemented using packet exchanges.

Nevertheless, it is clear that by packing so many functions so closely on a single chip with many

of the resources being shared amongst the on-chip CPUs and the influence of the cache

operation make it very hard to develop applications with fully predictable temporal properties

and low latencies. Hence the conclusion remains the same: the embedded developer must

adapt hos programming model from a fully static but no longer predictable in time to a

concurrent programing model that allows to absorb the small timing variations that are now

unavoidable because of the complexity of the hardware sharing.

34 Formalising Quality of Service (QoS) domains | Altreonic "From Deep Space to Deep Sea"

4 An approach for QoS resource scheduling

In this section we make an attempt at developing the QoS domains as requirements resulting

in concrete functional and architectural support to enable managing the diversity of

multi/many-core on-chip resources.

4.1 Fo r m a l i s i n g Quality of Service (QoS) domains
If a system needs more resources in a worst case application scenario than available, does it

mean that it is not a feasible system? As we have seen above, this needs not to be the case. The

step to make is to assign the priorities not only in terms of meeting real-time constraints (as

dictated by RMS) but also as a function of the criticality level of the task. In essence, we can

distinguish three levels whereby we map the criticality level to a QoS level:

 QoS-3: Tasks that must run and never miss any deadline: this is the hard real-time

domain.

 QoS-2: Tasks that must run but can miss a deadline if not too often: this is the

soft real-time domain of best effort.

 QoS-1: Tasks that must run but only when resources are left over: this is the

domain of no guarantees.

We can formalise this further:

QoS-1 is the level where is no guarantee that there will be resources to provide the

service.

This implies tasks with no strict real-time constraints and often convenience functions.

It also applies to tasks where the output is more or less time-independent. If no update

can be calculated, the previous output will be sufficient. This does not mean that for a

service to remain usable, that a certain level of updating must be possible. A typical

example application is a video phone with a bad connection. In the worst case, the user

can switch off the video transmission to improve the audio quality. Hence a fault like

resource exhaustion does not result in a fatal condition but mostly in a lower level of

service provided. The limit case is the one whereby the quality has so much

deteriorated that it becomes fully unusable. Of course, this should not happen more

often than specified. This might be the case when the system has been underspecified

from the very beginning.

QoS-2 is the level where the tasks must produce a result within a statistically acceptable

interval.

This means that the tasks have no hard real-time constraints but should still meet them

most of the time, hence we can define quality attributes like probability of reaching the

deadline within a time interval, probability of successive misses, etc. Hence a fault like

resource exhaustion results in a statistically predictable failure rate. Upon a fault, the

application must define what an acceptable behaviour is. Typical behaviour is: abort

and drop the result, extrapolate from a previous result, etc. Hence the service

degradation has been specified and must be met.

35 Isolation for error propagation prevention | Altreonic "From Deep Space to Deep Sea"

QoS-3 is the level whereby the system does not tolerate missing a deadline.

If such a fault occurs, all service can be lost. While the consequences are application

specific, the application must be capable to capture the fault and prevent it from

generating system errors, switch the system to a safe state or initiate actions to restart

the system. This is typically the domain of safety, often requiring hardware support. We

can distinguish two subdomains depending on the hardware architecture. If no

redundancy is available, the system must be brought into a safe state after the fault

happened. Hence, it is part of the system specification. If hardware redundancy is

available, then the redundancy can be used to still provide a valid output. Hence, the

system will have degraded but the service level will have been maintained. Of course, a

subsequent fault can now be fatal; hence the safety assurance will now be lower.

Note that above classification is very generic and does not prescribe in detail how the system

should handle the faults. This is often application specific. However it shows that in general a

system can host several applications or functions with a different level of QoS. It also points to a

different approach in safety design. Rather than making sure in a static way that an application

has all the resources defined at build time, we only need to guarantee this for QoS3 level

applications. Fault tolerance can be considered as its limit case. If the system has serious issues

with resource exhaustion, then all resources should be assigned to meet QoS3 specifications. In

the worst case, this means keeping the system alive as long as possible with minimal

resources to prevent greater catastrophic failures.

This is in line with the concept of Rate Monotonic Scheduling whereby priority is used to assign

automatically the CPU time to the highest priority tasks and whereby priority inheritance is

used to unblock the resources as fast as possible so that higher priority task an use them.

4.2 Isolation for error propagation prevention
Given that we have different QoS levels, a clear requirement is that errors in one level must not

result in errors in another, in particularly higher QoS level. But also inside each level, measures

must be taken to prevent error propagation from one function to another. This should be

pursued in a systematic way and requires several layers of defense.

At the programming level: Error-free code. The first objective to achieve is avoiding that the

software itself generates errors that were introduced during its development. While extensive

testing can uncover many of these, to increase the assurance formal modelling and verification

is a must for safety critical applications.

Defensive programming: The second objective is to protect the software from runtime

generated errors. This is mostly related to the numerical domains. Data values must remain in a

valid range at the input, processing and output stage. While this is also a concern of developing

error-free code, data can also receive wrong values due to hardware faults (e.g. corrupted bits

due to external radiation of a power supply glitch). Several techniques can be used to mitigate

the effects, ranging from plausibility checks, clamping the data to limit values, using redundancy

or using coded programming. In general, this also means adopting a programming style that

avoids dynamically changing code and data at runtime. Static code that verifies at compile time

36 Isolation for error propagation prevention | Altreonic "From Deep Space to Deep Sea"

that all resources needed are available before the code is started, is certainly a good strategy

for many safety critical embedded systems.

At the processor level: Current processor designs are still largely based on the von Neumann

architecture whereby the ALU sequentially executes code thereby reading and writing data

residing in a global address space. This in conflict in terms of error propagation with the RTOS

programming model that can be seen as set of interacting functions, each having their own

workspace (and hence called tasks in a RTOS). When a task is executing, it is written in the

assumption that it has access to all on-chip resources and executes independently whereby the

RTOS kernel isolates it from the lower level hardware details. We see here the emergence of

virtualisation. To make this safe and secure, no task shall be allowed to modify code or data

belonging to other tasks, except under protection of the kernel task using its services. On many

micro-controllers there is no hardware support available, so only verified software can reduce

the probability of this happening to a minimum. More advanced micro-controllers will have

some form of memory protection (MPU) that allows restrict memory access to specified regions

(often with a granularity of a few Kbytes) and will have a user as well as supervisor mode,

whereby in user mode certain operations are prohibited. High-end processors will have

Memory Management support (MMU) whereby the MMU helps in executing code in a virtual

linear address space and helps to isolate user applications from each other. MMUs are however

complex and resource intensive, whereby the granularity is fairly large tens of Kbytes). Latest

developments have added so-called hypervisor support. Hereby the processor I/O space is

virtualised, reducing the probability of corruption by competing processes. All these hardware

techniques assist the software layer, but increase the complexity and decrease the hard-real

time capability, as e.g. extra latencies are introduced.

At the processor’s architectural level: A simple and straightforward strategy is to develop

the processing hardware in such a way that each application has its own dedicated CPU core.

This technique is not new as it allows using dedicated and optimised CPU cores for the

application at hand. In addition, if each core has its own local memory, often the clock

frequency can be reduced, which is beneficial in terms of energy consumption. However the

designer is here confronted with physical constraints. First of all, memory now becomes the

critical resource. In additional memory technology has followed CPU clocks in size but not in

speed. Secondly, in the end processors are I/O bound and there is only a maximum of pins that

can be put on a chip package. Hence, memory as well as I/O devices have become shared

resources, even in the case of redundancy.

At the system’s architectural level: From above, one can see that to reach the highest level of

QoS, dedicated hardware is the most trustworthy solution. In the ideal case, we have different

chips for each application. While this is no longer very costly, it moves partly the problem to the

PCB domain where the probability of failures due to mechanical and chemical stress is higher

than in the chip package. However, it is often the only way to mitigate common mode failures

(example: power supply issues) and with an adequate programming model, it allows

heterogeneous redundancy.

To conclude we can see that the various defense mechanisms are intertwined and a good trade-

off decision will depend as well on the application as on the available hardware. However, two

37 The trade-offs involved when selecting the resource quantum | Altreonic "From Deep Space to
Deep Sea"

factors dominate. The first one is that an adequate programming model is a precondition. The

second one is that simple hardware error detection and protection mechanisms can be very

beneficial. In all cases is the key challenge to share the available resources in the best possible

way

4.3 The trade-offs involved when selecting the resource

quantum
When resources are available, a mechanism must be provided to share them amongst the

competing application functions. The simplest way is to associate a logical resource lock

(managed by the RTOS kernel) with each physical resource. The question is to know how much

of the global resources like bandwidth, memory or energy should be allocated. We call such a

resource part a resource quantum. The trade-offs to be made are multiple:

 The quantum must be large enough to offset the overhead associated with

allocating a quantum.

 The quantum should be small enough to avoid starvation for other application

functions.

We can illustrate this with the case of a shared communication link between two or more

nodes. Assuming we transmit and receive a communication unit of N bytes at a time, following

parameters are of importance:

 The set-up time of a communication.

 The transmit time of a communication.

 The maximum bandwidth of the communication medium.

 The communication overhead per transmitted byte (e.g. due to headers and

extra control bytes).

 The arbitration overhead and communication scheduling delay.

 The reception time of a communication.

If we assume that such a communication unit consists of a packet, itself composed of a header

and payload, then the set-up times will be equal for all packets but the transmission time

depends on the payload. The smaller the packets, the more packets we can send per unit of

time, but the lower the bandwidth at the application level. Moreover the larger the packet, the

longer the blocking time. A similar situation can be found when using time-slicing. Minimum

time-slices are needed to keep the overhead acceptable, but longer time slices will reduce the

responsiveness of the system. The issue is that the quantum size will be application and system

specific, hence no optimum solution can be found beforehand. The solution is to be found in an

iterative approach whereby first approximations and feedback from runtime profiling is used to

tune the quantum size until a better value is obtained. Note however that these values also

depend on the other applications being executed and hence optimal values can fluctuate at

runtime.

In an experimental set-up using the Intel experimental 48-core SCC chip, the communication

latency and bandwidth were measured using OpenComRTOS. The results were compared with

38 Maintaining maximum QoS by graceful degradation and recovery | Altreonic "From Deep Space to
Deep Sea"

the Texas Instruments 8-core C6678 DSP. While both processors target different applications, it

is clear that the additional wait states and shared communication infrastructure are the root

cause of an important communication bottle neck. This is in particular true for the Intel chip

whereas the C6678 has much better support for on- and off-chip data moving (using separate

busses, DMA engines and local caches that can be locked to act like zero wait state SRAM. The

interested reader can consult the paper [14]

4.4 Maintaining maximum QoS by graceful degradation

and recovery
The next problem to tackle is to define scheduling strategies that allow to keep a

maximum of QoS when faults occur whereby resources become depleted. This is complex

because the decisions must be swiftly taken, often based on incomplete information. We

can define following rules (amongst others):

 Applications with QoS level N have priority over applications with a QoS level lower

than N.

 QoS-3 requires redundancy.

 QoS-2 must have an abort mechanism for safely releasing resources.

 If the fault is intermittent, then recovery can be attempted.

In this scheme, the scheduler must be guaranteed to always have enough resources to exercise

control over the applications. If not, a clearing of the faulty state and reinitialisation of the

failing system unit is often the only option. Note that this scheme also generates a requirement

for the inter-node interactions. They must exhibit the same QoS level as the highest level

needed for the RTOS scheduler. QoS and ARRL

While we expressed QoS as an application level

property, it was often linked with the capability to

meet real-time deadlines, often associated with

the safety properties of a system. These safety

properties are expressed as SIL levels (Safety

Integrity Levels) [13]. These SIL levels express that

the system design has drastically reduced the

probability of residual errors resulting in potential

hazards (whereby people can become hurt of

killed). In this sense, QoS is a broader concept that

encompasses safety issues besides other issues

like security and availability of service. As we

outlined, reaching a certain QoS level requires an

approach on several fronts, often at the functional

or development process level. Hence, it makes

sense to develop a classification that gives us the requirements that must be met to reach a

certain QoS level. We called this the Assured Reliability and Resilience Levels or ARRL for short.

There are defined as follows:

re·li·abil·i·ty

Definition

of RELIABILITY

1: the quality or state of

being reliable

2: the extent to which an

experiment, test, or measuring

procedure yields the same

results on repeated trials

http://www.merriam-webster.com/dictionary/reliable

39 Maintaining maximum QoS by graceful degradation and recovery | Altreonic "From Deep Space to
Deep Sea"

 ARRL-0: Nothing is guaranteed (”use as is”).

 ARRL-1: The functionality is guaranteed as far as it was tested. This leaves the

untested cases as a potential domain of errors.

 ARRL-2: The functionality is guaranteed in all cases as far as no fault occurs. This

requires formal evidence covering all system states.

 ARRL-3: The functionality is fail-safe (errors are not propagated) or switches to a

reduced operational mode upon a fault. The fault behavior is predictable as well

as the next state after the fault. This means that fault modes are part of the

initial design specifications. This requires fault detection mechanisms as well

monitoring so that errors are contained and the system can be brought into a

controlled state again.

 ARRL-4: If a major fault occurs, the functionality is maintained and the system is

degraded to the ARRL-3 level. Transient faults are masked out. This requires

redundancy, e.g. TMR (Triple Modular Redundancy).

 ARRL-5: T o cope with residual common mode failures, the TMR is implemented

using heterogeneous redundancy.

When comparing with the QoS levels, one can see that a component or system must meet

minimum levels of ARRL to enable a minimum QoS level whereby we consider resource

exhaustion as a fault.

 QoS-1 requires a minimum of ARRL-2

 QoS-2 requires a minimum of ARRL-3

 QoS-3 requires a minimum of ARRL-4.

Hence, the ARRL levels allow us to define rules and

requirements that components must be met in

order to be usable for meeting a specified QoS level.

The implications:

Current single chip designs have shared resources,

hence only ARRL-2 or ARRL-3 in the best case can be

reached, whereas to reach ARRL-4 and ARRL-5, each

processor must have a dedicated set of resources

(CPU, memory, power, ...). ARRL-4 or ARRL-5 level

must then also be reached for the inter node

communication mechanism.

re·sil·ience

Definition

of RESILIENCE

1: the capability of a

strained body to recover

its size and shape

after deformation caused

especially by compressive

stress

2: an ability to recover

from or adjust easily

to misfortune or change

http://www.merriam-webster.com/dictionary/deformation
http://www.merriam-webster.com/dictionary/misfortune

40 Maintaining maximum QoS by graceful degradation and recovery | Altreonic "From Deep Space to
Deep Sea"

5 Conclusion

Modern advanced many/multicore chips introduce the need to take into account their

complexity of shared resources and their statistical nature of executing applications. This means

that traditional real-time and safety thinking (that assumes that everything is mostly static and

predictable) is no longer fully applicable, unless the on-chip resources are seriously under-

utilised. Nevertheless, they remain a necessary first-order approach that must be understood

and taken into account.

This publication proposes to consider meeting real-time constraints as part of the QoS offered

by an application, even in the presence of faults. The result is a scheme whereby graceful

degradation is defined as a design requirement, especially in the presence of faults.

The design path to a working solution is to consider most, if not all on-chip shared resources, as

resources for which the application functions compete at runtime constrained by their relative

priority derived from their QoS level. In this case we can reuse the priority inheritance protocol

for managing access to the resources. However, unless the chip designers have taken specific

precautions, this means that for the higher safety levels physical partitioning is still a must. This

publication does not yet present a complete solution on how to define the runtime scheduling

and resource sharing parameters for a given application. We envision a process whereby first

order approximations are derived from a static approach with runtime profiling allowing

improving upon the selected parameters. However, it remains a trade-off exercise as full

optimisation is not likely due to the statistical nature of the problem domain.

Finally, we have shown how different safety integrity levels (SIL) are related to quality of service

(QoS), whereby a criterion (ARRL) was formulated that components must meet to be used in

certain quality of service levels.

41 Further reading | Altreonic "From Deep Space to Deep Sea"

6 References

6.1 Further reading
1. E. Verhulst, R.T. Boute, J.M.S. Faria, B.H.C. Sputh, and V. Mezhuyev. Formal
Development of a Network-Centric RTOS. Software Engineering for Reliable Embedded
Systems. Springer, Amsterdam Netherlands, 2011.
2. Altreonic, January 2011. http://www.altreonic.com.
3. Eric Verhulst. Virtuoso : providing sub-microsecond context switching on dspswith a
dedicated nanokernel. in international conference on signal processing applications and
technology, santa clara september, 1993. 1993.
4. Wikipedia. Transputer — wikipedia, the free encyclopedia, 2011.
5. Inmos, January 2011. http://www.inmos.com, last visited: 20.01.2011.
6. C.A.R. Hoare. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
7. C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. J. ACM, 20:46–61, January 1973.
8. Loic P. Briand and Daniel M. Roy. Meeting Deadlines in Hard Real-Time Systems: The
Rate Monotonic Approach. IEEE, 1999.
9. Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael Gonzalez Harbour. A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for
Real-Time Systems. Springer, August 1993.
10. Mast, January 2011. http://mast.unican.es, last visited: 20.01.2011.
11. A. Styenko. Real-Time Systems: Scheduling and Structure Af.Sc. Thesis. University of
Toronto, 1985.
12. M.B. Jones. What really happened on mars, 1997.
13. IEC 61508 edition 2.0, 2010. [Online; accessed 19-March-2013].
14. A Formalised Real-time Concurrent Programming Model for Scalable Parallel Programming"
authors Eric Verhulst, Bernhard H.C. Sputh at the Workshop on High-performance and Real-
time Embedded Systems(HiRES 2013) January 23, 2013, Berlin,
Germany. http://www.altreonic.com/content/altreonic-hires2013-workshop
15. Intel Labs. The SCC Programmer's Guide, 2012.

http://communities.intel.com/servlet/JiveServlet/downloadBody/5684-102-8-
22523/SCCProgrammersGuide.pdf. 1, 4.4
16. Texas Instruments. TMS320C6678 Multicore Fixed and Floating-Point Digital Signal
Processor (Rev. C). http://www.ti.com/litv/pdf/sprs691c. 1

6.2 Acknowledgements
While GoedelWorks is a development of Altreonic Systems, part of the theoretical work was

done in the following projects:

1. CRAFTERS. Artemis Project. ConstRaint and Application driven Framework for Tailoring

Embedded Real-time Systems. Project website: http://www.crafters-project.org

2. Airbus, for lending us a PowerPC platform.

http://www.altreonic.com/
http://www.inmos.com/
http://mast.unican.es/
http://www.altreonic.com/content/altreonic-hires2013-workshop
http://www.evolve-itea.org/

42 Acknowledgements | Altreonic "From Deep Space to Deep Sea"

What this booklet is all about

Developing real-time Embedded Systems engineering is becoming complex because we have

now interconnected target system with many processors, often of a different type that contain

tens if not hundreds of processors. The complexity also increases because the semiconductor

developers can squeeze more and more on single chip. This requires that applications must

share the on-chip resources while the temporal behaviour becomes more statistical in nature.

While traditional real-time scheduling techniques are still valid, there is a need to shift towards

a scheduling approach based on Quality of Service (QoS) that includes the capability to continue

the processing for the most important application parts even when some of the resources fail.

By considering this, we have entered the domain of safety engineering whereby the ultimate

QoS offered is the survival of the system. This introduces the concept of Assured Reliability and

Resilience Level (ARRL) resulting in requirements to be met by components to meet the system

level QoS requirements.

Second publication in the Gödel Series:

Systems Engineering for Smarties©

